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A B S T R A C T

The increasing antibiotic mycelial residues (AMRs) have brought significant threats to our ecosystems and
public health. Aiming to quantify pollutants generated from AMRs management, evaluate corresponding
environmental impacts, and identify the key factors related with AMRs management, a life cycle assessment
approach was employed on analyzing AMRs. In order to improve the accuracy of results, uncertainty analysis
was also performed so that a holistic picture of environmental emissions generated from AMRs management is
presented. Results show that human toxicity, terrestrial ecotoxicity, marine ecotoxicity, and fossil depletion are
the major environmental impacts caused by AMRs management. Uncertainty analysis reveals that the
gasification of AMRs is the best option among the four AMRs treatment scenarios due to its large energy
recovery capacity, while incineration scenario has the worst environmental performance due to its large
pollutants emissions and sodium hydrogen consumption. Results obtained from this study (e.g., environmental
impacts, key factors, and potential improvement) could provide valuable insights to policymakers so that the
overall environmental impacts from AMRs management can be mitigated.

1. Introduction

Antibiotic drugs have been widely produced and used due to their
important functions on medical interventions and treatment [1,2]. The
global human consumption of antibiotics had increased by 36% during
2000–2010 [2]. Specifically, China has been the world's largest raw
materials producer and exporter for producing antibiotics since 2009
[3]. China produced 0.12 million ton of antibiotics in 2013, of which
0.03 million ton was exported, accounting for 70% of the global market
[4]. Such a large amount of production also led to a large volume of
antibiotic mycelial residues (AMRs). AMRs have been considered as
hazardous wastes in China since 2008 because they contain several
toxic substances (for example, antibiotics residues, heavy metals, and
metabolic intermediates) [5–8]. Many studies uncovered that antibio-
tic residues exposed to the natural environment can lead to antibiotic-
resistant bacteria [9,10]. The World Health Organization (WHO)
reported that antibiotic-resistant bacteria have already emerged and
spread among human beings and animals [11]. Under such a circum-
stance, it is critical to safely manage AMRs.

AMRs generated from bio-fermentation processes for antibiotics

production could be considered as a significant source of biomass
resources [12]. In the past few years, the AMRs were used as food
additives for the livestock or as a type of fertilizer for agricultural
purposes [13,14]. But these measures have been forbidden since 2008,
when AMRs were listed in China's National Catalogue of Hazardous
Wastes. Currently, the most commonly used disposal methods are
landfilling and incineration. Unfortunately, these two disposal methods
are not being widely accepted due to their high costs and serious
secondary environmental problems [13]. Resource recovery efforts
have been made to respond such issues and also address energy
shortage in recent years [15,16]. Several technologies have been
developed and applied since AMRs are significant sources of biomass.
These technologies can help improve biogas production via exploring
optimum conditions for the anaerobic digestion (AD) of AMRs,
including hydrothermal pretreatment [5,12], alkaline pretreatment
[17,18], the combination of hydrothermal and alkaline [19], and the
potential biogas production under the co-digestion of AMRs with food
wastes [20,21].

LCA is an efficient method for quantifying the environmental
impacts of materials and energy flows in processes' life cycles [22].
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As one of the best environmental management tools [23,24], LCA has
been considered an effective method for evaluating the environmental
impacts related with alternative solid waste management options
[25,26] and has been widely employed in the United Kingdom
[27,28], Spain [29], Italy [30,31], Japan [32], Iran [33], Australia
[34], the United States [35], Canada [36], and Brazil [37]. Especially,
LCA studies on various wastes have been conducted in China, such as
municipal solid wastes (MSW) [38,39], food wastes [40], electronic
wastes [41], industrial hazardous wastes (IHW) [42], and sewage
sludge [43–45]. For example, one LCA study on IHW landfill and
incineration was conducted to quantity environmental impacts gener-
ated from one IHW landfill and incineration site, identify key factors
contributing to the environmental impacts, and provide suggestions for
reducing related environmental impacts [42]. However, to the best of
our knowledge, no specific LCA studies on AMRs management have
been performed. Also, there are few studies on evaluating the environ-
mental impacts generated from different AMRs management options.
Under such a circumstance, it is critical to conduct life cycle assessment
(LCA) on different AMRs management options so that a holistic picture
of environmental performance generated from AMRs management can
be obtained. In addition, uncertainty analysis is conducted so that
results can be convincible and accurate for policy making. The whole
paper is organized as below. After this introduction section, Section 2
details research methods and data sources. Section 3 shows research
results and Section 4 discusses policy implications. Finally, Section 5
draws research conclusions.

2. Material and methods

2.1. Functional unit and system boundary of life cycle assessment

Defining a functional unit is central to LCA. A functional unit
provides a quantified reference for both inputs and outputs of one
system [46]. In this study, one ton of dry AMRs (DAMRs) was selected
as the functional unit.

Four scenarios of AMRs management, namely, hazardous waste
incineration (S-1), gasification (S-2), anaerobic digestion (AD) with
energy recovery plus landfill (S-3), and AD with energy recovery plus
incineration (S-4), were set up and investigated in this study. In all the
four scenarios, the common processes include raw materials and
energy production, road transport, and direct emissions (for example,
particulates, nitrogen oxides, and mercury). Energy recovery of biogas
from AMRs via AD process was considered in S-3 and S-4. For S-1 and
S-2, fly ash was disposed of as a type of hazardous waste to landfill. For
S-3, sanitary landfill for the final disposal of biogas residue was
considered after the AD process. For S-4, incineration of biogas residue
was considered after the AD process. In addition, the wastewater was
directly reused after wastewater treatment process for S-1 and the AD
process. Fig. 1 shows the system boundary of all the four scenarios.

2.2. Life cycle impact assessment

Life cycle impact assessment (LCIA) results were evaluated based
on ReCiPe method [47,48], which is a commonly used framework for
LCA. ReCiPe uses an impact mechanism with a global scope and
considers a broad set of 18 midpoint impact categories. These midpoint
impact categories include climate change, ozone depletion, terrestrial
acidification, freshwater eutrophication, marine eutrophication, human
toxicity, photochemical oxidant formation, particulate matter forma-
tion, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity,
ionising radiation, agricultural land occupation, urban land occupation,
natural land transformation, water depletion, metal depletion, and
fossil depletion. Detailed information and complete characterization
factors of the ReCiPe method are available on the website from the
Institute of Environmental Science at Leiden University, the
Netherlands [49]. Normalization was conducted for comparison among

the midpoint impact categories and to analyze the respective share of
each impact category to the overall impact [50].

Based on Taylor series expansion, uncertainty analysis was per-
formed [51]. Eq. (1) lists the detailed calculation process.
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where SAi, SBj, GSDAi, and GSDBj represent the sensitivity and the
geometric standard deviation of individual processes xi and xj for the
scenario A and scenario B, respectively. Meanwhile, SAk and SBk are the
sensitivity of the common parameters k for the scenario A and scenario
B, respectively. GSDXk is the geometric standard deviation of common
parameter k for both scenarios. Detailed information on applying the
explicit analytical method can be obtained from Hong [52] and Hong
et al. [53].

2.3. Data sources

Four AMRs management scenarios were proposed and investigated
in this study. For S-1 and S-2, on-site data (for example, energy and
materials consumption, direct emissions, and the amounts of waste-
water and solid wastes) were obtained based on annual monitoring
data. For S-3 and S-4, report data of North China Pharmaceutical
Group Co., Ltd. [54] were used. The biogas yield and sodium hydrogen
consumption during the AD process were taken from Tian [55], which
was performed based on the AMRs obtained from North China
Pharmaceutical Group Co., Ltd. In addition, energy consumption,
energy recovery capacity, and direct emissions of AD process were
obtained from Xu et al. [40]. Chinese data on solid waste landfill and
incineration [38], coal-based electricity generation [56], road transport
[57], and wastewater treatment [40] are used in this study. Relevant
background data (e.g., infrastructure, hazardous waste solidification,

Fig. 1. System boundary.
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hazardous waste landfill, and diesel production) from Europe [58] are
used because of the lack of such information in China. Table 1 presents
the characteristics of the AMRs used in this study.

2.4. Life cycle inventory

Table 2 provides the life cycle inventory (LCI) results of the

aforementioned four scenarios. All energy and materials consumption,
direct emissions, waste production, and energy recovery were based on
the same functional unit. CO2 emissions from the incineration or
utilization of AMRs were omitted because AMRs are considered a type
of biogenic source.

3. Results

3.1. LCIA results

Table 3 shows the LCIA midpoint results based on ReCiPe method
for all the four scenarios. S-1 has the highest impact on most impact
categories, except freshwater eutrophication, terrestrial ecotoxicity,
and water depletion. S-3 has the highest impact on freshwater
eutrophication, while S-4 has the highest impact on terrestrial ecotoxi-
city and water depletion. Compared with S-4, S-3 has lower values in
all impact categories except freshwater eutrophication. Meanwhile, S-2
has the lowest environmental impact on all impact categories except
terrestrial acidification, photochemical oxidant formation, and parti-

Table 1
Primary characterization factors of the AMRs considered in this study.

Characteristics Unit Value

Water content % 65.48
Calorific value (Qb, ar) MJ/kg 5.62
C (Car) % 16.96
N (Nar) % 2.07
H (Oar) % 1.10
O (Oar) % 9.04
Volatile Solid/Total Solid (VS/TS) % 94.78

Table 2
Life cycle inventory results of each scenario. Values are presented per functional unit.

Unit S-1 (Hazardous waste incineration) S-2 (Gasification) S-3 (AD+Landfill) S-4 (AD+Incineration)

Resources consumption Water ton 2.71 5.20 5.10 5.10
Electricity consumption kWh 391.08 233.14 79.41 79.41
Gas kg 5.16 – – –

Diesel kg 2.67 0.63 – –

Charcoal kg 3.48 – – –

Limestone kg 193.97 – 125.36 –

Sodium hydroxide kg 54.81 – 80.00 80.00
Electricity recovery kWh – – −527.24 −527.24
Steam recovery MJ – −1.72×104 −2.39 −2.39
Coal kg – – 19.70 19.70

Emissions to air Mercury g 0.41 3.59×10−3 – –

Cadmium g – 2.90×10−2 – –

Thallium g – 0.29 – –

Antimony g 8.31×10−3 0.29 – –

Arsenic g 3.24 1.74×10−4 – –

Lead g 8.72 0.14 – –

Chromium g 0.87 0.23 – –

Cobalt g – 0.14 – –

Copper g 0.32 0.14 – –

Magnesium g 0.41 0.23 – –

Nickel g 0.64 0.17 – –

Tin g 1.27 – – –

Particulates g 1.14×103 49.25 – –

Carbon monoxide g 501.62 492.51 – –

Sulfur dioxide g 5.24×103 78.80 – –

Nitrogen oxides g 5.85×103 789.98 – –

Dioxins g 3.97×10−6 2.03×10−6 – –

Hydrogen fluoride g 1.74 – – –

Hydrogen chloride g 10.66 – – –

Nitrogen g – – 1.57×103 1.57×103

Hydrogen g – 165.35 165.35
Hydrogen sulfide g – – 281.71 281.71

Emissions to soil Chromium mg 4.23 – – –

Lead mg 2.78 – – –

Cadmium mg 0.70 – – –

Mercury mg 5.79×10−2 – – –

Copper mg 0.84 – – –

Zinc mg 1.71 – – –

Barium mg 31.89 – – –

Nickel mg 19.00 – – –

Fluorine mg 8.04×104 – – –

Arsenic mg 1.95×10−2 – – –

Waste Wastewater ton 5.30 – 5.68 5.68
Hazardous waste to solidification kg 11.07 – –

Hazardous waste to landfill kg 43.05 7.75 – –

Solid waste to landfill kg – 37.03 1.99×103 –

Solid waste to incineration ton – – – 1.82
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culate matter formation, in which S-3 has the lowest values for these
categories.

Fig. 2 depicts the normalized midpoint results for all the four
scenarios. In order to better identify the key factors, the contributions
of dominant processes to four scenarios are illustrated in Fig. 3. For S-
1, the impact on human toxicity contributes the most to the overall
environmental impact. Impacts in the forms of terrestrial acidification,
particulate matter formation, terrestrial ecotoxicity, marine ecotoxicity,
and fossil depletion categories are also important, whereas other
impacts are negligible. These impacts mainly come from the direct
emissions and the consumption of sodium hydrogen and electricity
during hazardous waste incineration (shown in Fig. 3). Therefore, it is
crucial to decrease direct air emissions, sodium hydrogen and elec-
tricity consumption.

For S-2, fossil depletion contributes the most to the overall
environmental impact, while other impact categories are insignificant.
Such a result is mainly due to the large amount of steam recovery
generated from S-2 (shown in Fig. 3). Thus, it is important to improve
energy recovery capacity.

For S-3 and S-4, impacts on human toxicity, terrestrial ecotoxicity,
and marine ecotoxicity are the major parts of the total environmental
impact, while the rest impact categories are insignificant. These
impacts mainly come from sodium hydrogen consumption and energy
recovery of biogas via AD process. In addition, the incineration of

Table 3
LCIA midpoint results of each scenario. Values are presented for one functional unit.

Categories Unit Value

S-1 S-2 S-3 S-4

Climate change kg CO2 eq 558.74 −250.99 −232.16 −217.72
Ozone depletion kg CFC−11 eq 7.90×10−6 −2.76×10−6 8.42×10−7 2.21×10−6

Terrestrial acidification kg SO2 eq 10.72 −0.67 −0.72 1.69
Freshwater eutrophication kg P eq 2.78×10−3 −1.27×10−3 6.15×10−3 5.66×10−3

Marine eutrophication kg N eq 0.31 −1.03×10−2 0.10 0.15
Human toxicity kg 1,4-DB eq 558.77 8.85 33.67 130.18
Photochemical oxidant formation kg NMVOC 8.57 −0.30 −0.54 1.35
Particulate matter formation kg PM10 eq 3.57 −0.19 −0.25 0.48
Terrestrial ecotoxicity kg 1,4-DB eq 1.25 6.86×10−3 1.72 1.77
Freshwater ecotoxicity kg 1,4-DB eq 0.10 −1.72×10−2 4.23×10−2 5.32×10−2

Marine ecotoxicity kg 1,4-DB eq 0.99 4.04×10−2 0.65 0.72
Ionising radiation kBq U235 eq 4.97 −3.32 1.67 2.21
Agricultural land occupation m2a 16.56 −0.32 1.19 4.09
Urban land occupation m2a 3.92 −1.94 −4.43×10−2 0.90
Natural land transformation m2 3.89×10−2 −1.55×10−2 2.96×10−3 1.08×10−2

Water depletion m3 6.13 3.73 4.93 7.61
Metal depletion kg Fe eq 6.45 −4.01 0.83 1.90
Fossil depletion kg oil eq 156.67 −922.78 −49.61 −9.53

Fig. 2. Normalized results for all the four scenarios.

Fig. 3. Contributions of dominant processes.
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biogas residues provides additional contribution to the overall impact
for S-4. Therefore, improving biogas production potential and decreas-
ing sodium hydrogen consumption is helpful to reduce the environ-
mental impacts of both S-3 and S-4.

In addition, although background data (for example, infrastructure,
hazardous waste solidification, hazardous waste landfill, and diesel
production) from Europe [58] were used in this study, impacts from
these processes are insignificant, due to the minimal contributions of
the aforementioned processes to the overall environmental impact
under all the four scenarios.

Fig. 4 depicts the contributions of significant substances to the
identified key impact categories (i.e., human toxicity, terrestrial
ecotoxicity, marine ecotoxicity, and fossil depletion). For S-1 and S-2,
the diffusion of mercury, lead, and arsenic to the air is the significant
contributor to human toxicity. In addition, the diffusion of antimony,
thallium, and cadmium into the air provides additional contributions
for S-2.

For S-1, the dominant contributor to terrestrial ecotoxicity is the
chloride discharged to the soil, while the chloride discharged to the soil
and mercury diffused to the air contribute to marine ecotoxicity. For S-
2, copper and cobalt diffused to the air, and chloride discharged to the
soil are the significant contributions to terrestrial ecotoxicity. Similarly,
copper and nickel diffused to the air are the dominant contributions to

marine ecotoxicity.
For S-3 and S-4, chlorine discharged to the soil from sodium

hydrogen production is the dominant contribution to human toxicity,
terrestrial ecotoxicity, and marine ecotoxicity. Cadmium, mercury, and
lead diffused to the air are mainly generated from incineration of
biogas residue and provide additional contributions to human toxicity
under S-4. For all the four scenarios, coal mainly used for energy
generation has the dominant contribution to fossil depletion.

3.2. Uncertainty analysis

LCI data were obtained from different AMRs management sites and
may lead to significant disparity due to regional differences. In order to
provide more accurate results, uncertainty analysis is performed.
Table 4 shows that the probability of S-2≥S-1, S-2≥S-3, S-2≥S-4, S-
1≥S-4, S-3≥S-1, and S-3≥S-4 in human toxicity category was 0%, 0.2%,
0%, 98.9%, 0%, and 0.4%, respectively. In other words, these results
indicate that S-1 leads the highest environmental impact in the form of
human toxicity, followed by S-4; S-2 has the lowest environmental
impact. Simulation results for other impact categories are listed in
Table 4.

By combining the uncertainty analysis results (shown in Table 4)
with the normalization results (shown in Section 3.1), it is clear that S-
2 leads to the lowest environmental impact among the four scenarios.
This can be explained by the huge energy recovery capacity of S-2. S-1
leads to the highest environmental impact, followed by S-4, indicating
that gasification is the best approach among the four AMRs manage-
ment methods, while incineration of AMRs is the worst choice because
of its higher environmental impacts.

3.3. Sensitivity analysis

3.3.1. Main contributors to environmental impacts
Sensitivity analysis is a systematic approach for estimating the

effects of selected data on the outcome of one study [46]. Fig. 5
presents the sensitivity analysis results of the aforementioned domi-
nant contributors to the associated impact categories. A 5% decrease of
sodium hydrogen consumption under S-1 could lead to approximately
0.25%, 4.73%, 2.32%, and 0.66% environmental benefit to human
toxicity, terrestrial ecotoxicity, marine ecotoxicity, and fossil depletion,
respectively, while an increase of 5% steam recovery under S-2 could
result in 1.33%, 1.48%, 1.72%, and 4.76% reductions in human
toxicity, terrestrial ecotoxicity, marine ecotoxicity, and fossil depletion,
respectively. Similar simulation results for the other contributors and
scenarios are shown in Fig. 5.

For S-1, the decrease of direct emissions provides the highest
environmental benefit to human toxicity, while the decrease of sodium
hydrogen consumption contributes the most to mitigating terrestrial
ecotoxicity. Both direct emissions and sodium hydrogen consumption
provide significant contributions to marine ecotoxicity.

For S-2, the decrease of direct emissions provides the highest
environmental benefit to human toxicity, terrestrial ecotoxicity, and
marine ecotoxicity, while the decrease of sodium hydrogen consumption
provides the highest contribution to mitigating the overall impact for S-3.

Fig. 4. Contributions of dominant substances to key impact categories a) human
toxicity, b) terrestrial ecotoxicity, c) marine ecotoxicity, d) fossil depletion.

Table 4
Uncertainty analysis results for the four scenarios.

P (S-

2≥S-1)

P ( S-

2≥S-3)

P (S-

2≥S-4)

P (S-1≥S-4) P (S-3≥S-1) P (S-3≥S-4)

Human toxicity 0% 0.2% 0% 98.9% 0% 0.4%
Marine

ecotoxicity
0% 0% 0% 83.1% 9.3% 35.9%

Terrestrial
ecotoxicity

0% 0% 0% 12.4% 84.1% 42.3%

Fossil depletion 0% 0% 0% 100% 0% 21.6%
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For S-4, incineration of biogas residue provides the highest con-
tribution to mitigating human toxicity, while the reduction of sodium
hydrogen consumption can mitigate most terrestrial ecotoxicity and
marine ecotoxicity. In addition, decreasing the consumption of elec-
tricity can minimize the fossil depletion for S-1, while the increase of
energy recovery can minimize the fossil depletion for the other
scenarios.

Sensitivity analysis results reconfirm that decreasing direct air
emissions, reducing the consumption of sodium hydrogen and elec-
tricity, improving energy recovery capacity are useful to reduce the
environmental impacts of AMRs management.

3.3.2. Sensitivity of energy recovery
Energy recovery capacity from 1 t of AMRs may vary due to several

factors, such as methane content of biogas, efficiency production
efficiency, and the utilization efficiency of biogas. It is clear that
increasing energy recovery capacity can lead to the largest environ-

mental benefit to reduce fossil depletion for S-3 and S-4 (shown in 3.1).
In order to further compare the results from these two scenarios,
sensitivity analysis of electricity generated from AD based methane is
performed for S-3 and S-4.

A linear relation between electricity recovery capacity and potential
environmental burden in fossil depletion is shown in Fig. 6, in which a
100 kwh/t-DAMRs increase of electricity recovery could lead to the
decrease of 1.76 kg 1,4-DB equivalent, 5.31×10−4 kg 1,4-DB equiva-
lent, 3.97×10−3 kg 1,4-DB equivalent, and 20.16 kg oil equivalent in
human toxicity, terrestrial ecotoxicity, marine ecotoxicity, and fossil
depletion, respectively. If the electricity recovery capacity is increased
to 600 kWh/t-DAMRs, fossil depletion will be reduced to −64.29 kg oil
equivalent for S-3 and −24.20 kg oil equivalent for S-4. Similar results
can also be found for the other impact categories.

4. Discussions

This study presents the LCIA results from four different AMRs
management scenarios. It shows that environmental impacts under
different AMRs management approaches are different. Uncertainty
analysis was also performed in order to improve the accuracy of our
results.

Among the four scenarios, S-2 leads to the lowest environmental
impacts on all impact categories except terrestrial acidification, photo-
chemical oxidant formation, and particulate matter formation, due to
the huge amount of energy recovery generated from S-2 (shown in
Fig. 3).

S-1 leads to the largest environmental impact on most impact
categories except freshwater eutrophication, terrestrial ecotoxicity, and
water depletion, due to direct pollutants emissions and the consump-
tion of sodium hydrogen (shown in Fig. 3).

Both S-3 and S-4 lead to relatively high environmental impact in
the forms of human toxicity, terrestrial ecotoxicity, and marine
ecotoxicity because of the emission of chlorine to the soil from sodium
hydrogen consumption process (shown in Fig. 3). Moreover, emissions
of cadmium, mercury, and lead to the air from biogas residue
incineration also contribute to human toxicity under the S-4 scenario.
Therefore, resource utilization on AMRs is highly recommended
instead of incineration, while gasification of AMRs is the best method
compared with other three management methods due to its lowest
environmental impact.

Specially, the impact on human toxicity contributes the most to the
overall environmental impacts for S-1 (Section 3.1). This result is
consistent with previous study [42], in which the environmental
burden of IHW incineration was evaluated. In addition, the reduction
of fossil depletion of incineration in this study (156.67 kg oil/t-
incineration) is close to previous reported studies (54.1–249.9 kg oil/
t-incineration) [42,58]. The environmental impact on global warming

Fig. 5. Sensitivity analysis of dominant processes for four scenarios.

Fig. 6. Sensitivity analysis of energy recovery for fossil depletion category.
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in this study (558.74 kg CO2 eq) is lower than that of previous study
(1.77–2.68 t CO2 eq) [42,58]. This difference is caused by the fact that
CO2 emissions during incineration process is omitted in this study
given that AMRs is a type of biogenic source (aforementioned in
Section 2.4).

Since AMRs were listed in China's National Catalogue of Hazardous
Wastes, the most popular management methods have changed to
hazardous waste landfill or incineration. However, both methods are
facing serious problems. For example, the limited disposal capacity of
current hazardous landfills is far away from the soaring demands [59].
Also, there are more public concerns on dioxin released from incinera-
tion plants. With increasing environmental awareness, most residents
do not want to expand the scales of existing hazardous wastes landfills
and incinerators or construct the new ones [59]. Academically, Ai et al.
[60] demonstrated that both incineration and landfill are not effective
methods for AMRs. After the Chinese government issued the policies
for accelerating the waste utilization [15,16], research and develop-
ment (R &D) efforts have been widely supported for seeking innovative
technologies on AMRs utilization. In this regard, several studies
[3,61,62] on the characteristics of AMRs have been conducted,
providing a solid foundation for the utilization of AMRs.

For instance, the AD technology has been proven to be an effective
method for AMRs treatment [5,12,17,19]. However, the biogas yields
of AMRs are influenced by various factors, such as temperature, pH,
and types of substrate. Related studies are summarized in Table 5. The
biogas yields normally range from 249.6 mL/g-VS to 446 mL/g-VS
under different operation conditions (shown in Table 5). According to
the reference [54], the biogas yield can achieve 450 mL/g-DAMRs by
using actual operation data. The biogas yield in this study was 435 mL/
g-DAMRs with a methane content of 65%, similar to other studies.

Co-digestion of lignocellulosic biomass with protein-rich wastes
could mitigate the adverse impact generated from ammonia and
volatile fatty acids during the AD process [63]. Several published
studies also indicate that co-digestion of AMRs with other materials
has higher methane production capacity than the single digestion
[20,21]. For example, Gao found that co-digestion of food waste and
penicillin bacterial residue (C/N=25:1) had a methane yield of 0.38 L/
gVS d, presenting 11.76% increase compared with digesting penicillin
bacterial residue alone [20]. Yin also found that the input of food waste
could improve the methane yield of cephalosporin bacterial residue
[21]. Therefore, it is critical to determine the appropriate feed stocks
for co-digestion in order to improve methane yield.

According to Li et al. [64], the power generation efficiency of
methane-based electricity (2.66 kWh/m3) is much less than the design
value (3.8–4.2 kWh/m3). In this study, the energy recovery of AD-
based methane is 1.86 kWh/m3, showing at least a 40% improvement
potential for energy recovery. If such a figure can increase to 200 kwh/
t-DAMRs, then the environmental benefits of 3.53 kg 1,4-DB equiva-
lent, 1.06×10−3 kg 1,4-DB equivalent, 7.94×10−3 kg 1,4-DB equivalent,
and 40.33 kg oil equivalent to human toxicity, terrestrial ecotoxicity,
marine ecotoxicity, and the reduction of fossil depletion will be
obtained, respectively. Therefore, in order to reduce the overall
environmental impacts of AD with energy recovery process, it is
necessary to improve the relevant technology on enhancing methane
yield and energy generation efficiency.

Incineration has been broadly applied for hazardous biomaterial
treatment in recent years due to its significant contribution to minimize
the volume and disinfect wastes [65]. However, the overall disposal
capacity of special hazardous waste incinerators is still limited to meet
the need of disposing of a huge volume of AMRs in China. Studies on
co-combustion of AMRs with other materials have been explored. For
example, Du et al. [66] investigated the combustion characteristics and
kinetics of co-firing of bio-ferment residue with coal. Jiang et al. [67]
investigated the co-combustion of AMRs in municipal solid waste
incinerator. Internationally, co-incineration of hazardous waste has
been permitted in the EU and the USA [67]. In the updated China's
National Catalogue of Hazardous Wastes, fly ash generated from MSW
incineration has been removed from the hazardous waste items when
some requirements are met [7]. In the proposed standards on
pollutants control for municipal solid waste incinerators, co-incinera-
tion of AMRs with municipal solid wastes was proposed in 2010 [68].
Although this proposal has not been approved, the co-incineration of
AMRs in the high temperature stoves (e.g., municipal solid waste
incinerator and cement-kiln incinerator) will be one solution for AMRs
treatment with the improvement of related regulations.

Studies on the co-composting of AMRs with sewage also have been
investigated [69–73]. However, both Chen et al. [70] and Yang et al.
[72] found that co-composting of AMRs with sewage sludge could
threaten the environment due to the antibiotic residues and antibiotic
resistance genes contained in the composts. Although the composts
from AMRs can meet the national standards in terms of nutrition
properties, they are dangerous for agriculture application [72]. The
China Environment News reported that it is impossible to compost all
kinds of AMRs [74]. Consequently, it is not an ideal solution to
compost AMRs for large-scale AMRs treatment.

In addition, the management of antibiotics-containing livestock
wastes is facing several challenges in China. In the most Chinese rural
areas, livestock wastes are directly discharged to the natural environ-
ment without any treatments [75,76]. Livestock wastes are significant
sources of veterinary antibiotics because most antibiotics are present in
urine and feces [1,75]. Moreover, antibiotics have been broadly
reported in various environmental compartments, even drinking water
system [75,76]. No specific regulations on the treatment of livestock
wastes have been issued in China. Wastewater treatment infrastructure
is also limited in the rural areas of China [76]. In order to address these
concerns, the national government initiated the livestock waste-to-
methane projects during the 12th Five-Year Plan (2011–2015). Such
efforts are effective since many environmental emissions have been
avoided [77]. Therefore, the National Development and Reform
Commission (NDRC) of China decided to continue to implement such
projects during the 13th Five-Year Plan (2016–2020) so that the
resource utilization of livestock wastes can be achieved [78]. Also,
Ministry of Agriculture of China released one regulation on promoting
the agricultural supply chain reform, in which the avoidance and
reduction of antibiotics is actively promoted [79]. In addition, ecolo-
gical civilization has become one national development strategies since
2013, in which more efforts on improving rural environment will be
initiated, such as the construction of more rural wastewater treatment
plants and ecological wetlands, the stricter enforcement of related
environmental laws and regulations in rural areas, more capacity-

Table 5
Biogas yields under different operation conditions.

Substrate type Pretreatment Biogas yield (mL/g-VS) Methane yield (mL/g-VS) Methane content (%) Ref.

Cephalosporin bacterial residue Hydrothermal (120 °C, pH=7.0, 60 min) 446 290 65.02 [5]
Cephalosporin bacterial residue Thermal-alkaline (80 °C, pH=12, 60 min) 365 231 63.29 [49]
Penicillin bacterial residue Thermal-alkaline (70 °C, pH=13, 30 min) 267.5 201.2 75.21 [50]
Penicillin bacterial residue Thermal-alkaline (100 °C, pH=13, 60 min) 249.6 193.6 77.56 [50]
Cephalosporin bacterial residue Hydrothermal (120 °C, pH=6.8–7.2, 20 min) 328 227 69.21 [12]
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building efforts on improving rural residents’ environmental awareness
and more research funds to support the application of advanced
agricultural technologies (such as organic farms) [80]. With the
implementation of these measures, it is expected that the overall
environmental impacts from AMRs will be mitigated.

5. Conclusions

China's large production and consumption of AMRs has brought
several environmental challenges. In order to solve these challenges, it
is critical to identify the most feasible solution so that the overall
impact can be reduced. Under such a circumstance, this study aims to
quantify the various impacts, identify the key factors, and select the
best solution for AMRs management. Four scenarios were set up and
assessed by using life cycle analysis. Also, uncertainty analysis was
conducted to further validate the research results so that more accurate
findings are available for policy making. Results show that the major
environmental impacts of AMRs disposal include human toxicity,
terrestrial ecotoxicity, marine ecotoxicity, and fossil depletion. From
factor identification perspective, direct emissions are the key contribu-
tors to the overall environmental burden generated from S-1, while
energy recovery is the key contributor for the scenario of S-2. Sodium
hydrogen consumption is the major contributor for both scenarios S-3
and S-4. Based upon these findings, several policy recommendations
are proposed, including the reduction of direct air pollutants emissions,
improving technologies to enhance methane yield and energy recovery
efficiency, and decreasing sodium hydrogen consumption. These
recommendations should be implemented with the appropriate regula-
tions. Consequently, policy-makers should prepare their own regula-
tions by considering their own realities so that the overall impact from
results obtained from this study will provide scientific information on
environmental impacts generated from AMRs can be mitigated. During
this process, all the stakeholders should work together so that disputes
can be solved quickly and experiences and expertise can be shared.
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